Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Genet Metab ; 140(3): 107694, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37708665

RESUMO

Creatine transporter deficiency (CTD), caused by pathogenic variants in SLC6A8, is the second most common cause of X-linked intellectual disability. Symptoms include intellectual disability, epilepsy, and behavioral disorders and are caused by reduced cerebral creatine levels. Targeted treatment with oral supplementation is available, however the treatment efficacy is still being investigated. There are clinical and theoretical indications that heterozygous females with CTD respond better to supplementation treatment than hemizygous males. Unfortunately, heterozygous females with CTD often have more subtle and uncharacteristic clinical and biochemical phenotypes, rendering diagnosis more difficult. We report a new female case who presented with learning disabilities and seizures. After determining the diagnosis with molecular genetic testing confirmed by proton magnetic resonance spectroscopy (1H-MRS), the patient was treated with supplementation treatment including creatine, arginine, and glycine. After 28 months of treatment, the patient showed prominent clinical improvement and increased creatine levels in the brain. Furthermore, we provide a review of the 32 female cases reported in the current literature including a description of phenotypes, genotypes, diagnostic approaches, and effects of supplementation treatment. Based on this, we find that supplementation treatment should be tested in heterozygous female patients with CTD, and a prospective treatment underlines the importance of diagnosing these patients. The diagnosis should be suspected in a broad clinical spectrum of female patients and can only be made by molecular genetic testing. 1H-MRS of cerebral creatine levels is essential for establishing the diagnosis in females, and especially valuable when assessing variants of unknown significance.


Assuntos
Encefalopatias Metabólicas Congênitas , Deficiência Intelectual , Retardo Mental Ligado ao Cromossomo X , Masculino , Humanos , Feminino , Deficiência Intelectual/genética , Creatina , Encefalopatias Metabólicas Congênitas/diagnóstico , Encefalopatias Metabólicas Congênitas/genética , Encefalopatias Metabólicas Congênitas/tratamento farmacológico , Retardo Mental Ligado ao Cromossomo X/diagnóstico , Retardo Mental Ligado ao Cromossomo X/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Proteínas do Tecido Nervoso
3.
Front Neurosci ; 17: 1219262, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37502687

RESUMO

Introduction: Phenotypic spectrum of SLC6A1-related neurodevelopmental disorders (SLC6A1-NDD) includes intellectual disability (ID), autistic spectrum disorders (ASD), epilepsy, developmental delay, beginning from early infancy or after seizure onset, and other neurological features such as hypotonia and movement disorders. Data on familial phenotypic heterogeneity have been rarely reported, thus in our study we aimed to investigate intrafamilial phenotypic variability in families with SLC6A1 variants. Methods: We collected clinical, laboratory and genetic data on 39 individuals, including 17 probands, belonging to 13 families harboring inherited variants of SLC6A1. Data were collected through an international network of Epilepsy and Genetic Centers. Results: Main clinical findings in the whole cohort of 39 subjects were: (a) epilepsy, mainly presenting with generalized seizures, reported in 71% of probands and 36% of siblings or first/second-degree relatives. Within a family, the same epilepsy type (generalized or focal) was observed; (b) ID reported in 100% and in 13% of probands and siblings or first/second-degree relatives, respectively; (c) learning disabilities detected in 28% of the SLC6A1 carriers, all of them were relatives of a proband; (d) around 51% of the whole cohort presented with psychiatric symptoms or behavioral disorders, including 82% of the probands. Out of the 19 patients with psychiatric symptoms, ASD were diagnosed in 40% of them; (e) neurological findings (primarily tremor and speech difficulties) were observed 38.5% of the whole cohort, including 10 probands. Our families harbored 12 different SLC6A1 variants, one was a frameshift, two stop-gain, while the remaining were missense. No genotype-phenotype associations were identified. Discussion: Our study showed that first-or second-degree relatives presented with a less severe phenotype, featuring mainly mild intellectual and/or learning disabilities, at variance with the probands who suffered from moderate to severe ID, generalized, sometimes intractable, epileptic seizures, behavioral and psychiatric disorders. These findings may suggest that a proportion of individuals with mild SLC6A1-NDD might be missed, in particular those with an older age where genetic testing is not performed. Further studies on intrafamilial phenotypic variability are needed to confirm our results and possibly to expand the phenotypic spectrum of these disorders and benefit genetic counseling.

4.
Dis Model Mech ; 16(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37334838

RESUMO

O-linked ß-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is an essential enzyme that modifies proteins with O-GlcNAc. Inborn OGT genetic variants were recently shown to mediate a novel type of congenital disorder of glycosylation (OGT-CDG), which is characterised by X-linked intellectual disability (XLID) and developmental delay. Here, we report an OGTC921Y variant that co-segregates with XLID and epileptic seizures, and results in loss of catalytic activity. Colonies formed by mouse embryonic stem cells carrying OGTC921Y showed decreased levels of protein O-GlcNAcylation accompanied by decreased levels of Oct4 (encoded by Pou5f1), Sox2 and extracellular alkaline phosphatase (ALP), implying reduced self-renewal capacity. These data establish a link between OGT-CDG and embryonic stem cell self-renewal, providing a foundation for examining the developmental aetiology of this syndrome.


Assuntos
Deficiência Intelectual , Animais , Camundongos , Deficiência Intelectual/metabolismo , Autorrenovação Celular , Glicosilação , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo
5.
Basic Res Cardiol ; 118(1): 8, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36862248

RESUMO

Whereas cardiomyocytes (CMs) in the fetal heart divide, postnatal CMs fail to undergo karyokinesis and/or cytokinesis and therefore become polyploid or binucleated, a key process in terminal CM differentiation. This switch from a diploid proliferative CM to a terminally differentiated polyploid CM remains an enigma and seems an obstacle for heart regeneration. Here, we set out to identify the transcriptional landscape of CMs around birth using single cell RNA sequencing (scRNA-seq) to predict transcription factors (TFs) involved in CM proliferation and terminal differentiation. To this end, we established an approach combining fluorescence activated cell sorting (FACS) with scRNA-seq of fixed CMs from developing (E16.5, P1, and P5) mouse hearts, and generated high-resolution single-cell transcriptomic maps of in vivo diploid and tetraploid CMs, increasing the CM resolution. We identified TF-networks regulating the G2/M phases of developing CMs around birth. ZEB1 (Zinc Finger E-Box Binding Homeobox 1), a hereto unknown TF in CM cell cycling, was found to regulate the highest number of cell cycle genes in cycling CMs at E16.5 but was downregulated around birth. CM ZEB1-knockdown reduced proliferation of E16.5 CMs, while ZEB1 overexpression at P0 after birth resulted in CM endoreplication. These data thus provide a ploidy stratified transcriptomic map of developing CMs and bring new insight to CM proliferation and endoreplication identifying ZEB1 as a key player in these processes.


Assuntos
Miócitos Cardíacos , Transcriptoma , Animais , Camundongos , Proliferação de Células , Genes Homeobox , Ploidias , Poliploidia , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Dedos de Zinco
6.
Epilepsia ; 61(3): 387-399, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32090326

RESUMO

OBJECTIVE: Voltage-gated sodium channels (SCNs) share similar amino acid sequence, structure, and function. Genetic variants in the four human brain-expressed SCN genes SCN1A/2A/3A/8A have been associated with heterogeneous epilepsy phenotypes and neurodevelopmental disorders. To better understand the biology of seizure susceptibility in SCN-related epilepsies, our aim was to determine similarities and differences between sodium channel disorders, allowing us to develop a broader perspective on precision treatment than on an individual gene level alone. METHODS: We analyzed genotype-phenotype correlations in large SCN-patient cohorts and applied variant constraint analysis to identify severe sodium channel disease. We examined temporal patterns of human SCN expression and correlated functional data from in vitro studies with clinical phenotypes across different sodium channel disorders. RESULTS: Comparing 865 epilepsy patients (504 SCN1A, 140 SCN2A, 171 SCN8A, four SCN3A, 46 copy number variation [CNV] cases) and analysis of 114 functional studies allowed us to identify common patterns of presentation. All four epilepsy-associated SCN genes demonstrated significant constraint in both protein truncating and missense variation when compared to other SCN genes. We observed that age at seizure onset is related to SCN gene expression over time. Individuals with gain-of-function SCN2A/3A/8A missense variants or CNV duplications share similar characteristics, most frequently present with early onset epilepsy (<3 months), and demonstrate good response to sodium channel blockers (SCBs). Direct comparison of corresponding SCN variants across different SCN subtypes illustrates that the functional effects of variants in corresponding channel locations are similar; however, their clinical manifestation differs, depending on their role in different types of neurons in which they are expressed. SIGNIFICANCE: Variant function and location within one channel can serve as a surrogate for variant effects across related sodium channels. Taking a broader view on precision treatment suggests that in those patients with a suspected underlying genetic epilepsy presenting with neonatal or early onset seizures (<3 months), SCBs should be considered.


Assuntos
Síndromes Epilépticas/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Canais de Sódio/genética , Idade de Início , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/fisiopatologia , Criança , Pré-Escolar , Códon sem Sentido , Variações do Número de Cópias de DNA , Eletroencefalografia , Síndromes Epilépticas/tratamento farmacológico , Síndromes Epilépticas/fisiopatologia , Feminino , Mutação com Ganho de Função , Deleção de Genes , Duplicação Gênica , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Humanos , Lactente , Recém-Nascido , Mutação com Perda de Função , Masculino , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.2/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.3/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/fisiopatologia , Fenótipo , Bloqueadores dos Canais de Sódio/uso terapêutico , Canais de Sódio/metabolismo
7.
Brain ; 142(10): 3009-3027, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504254

RESUMO

N-methyl d-aspartate receptors are ligand-gated ionotropic receptors mediating a slow, calcium-permeable component of excitatory synaptic transmission in the CNS. Variants in genes encoding NMDAR subunits have been associated with a spectrum of neurodevelopmental disorders. Here we report six novel GRIN2D variants and one previously-described disease-associated GRIN2D variant in two patients with developmental and epileptic encephalopathy. GRIN2D encodes for the GluN2D subunit protein; the GluN2D amino acids affected by the variants in this report are located in the pre-M1 helix, transmembrane domain M3, and the intracellular carboxyl terminal domain. Functional analysis in vitro reveals that all six variants decreased receptor surface expression, which may underline some shared clinical symptoms. In addition the GluN2D(Leu670Phe), (Ala675Thr) and (Ala678Asp) substitutions confer significantly enhanced agonist potency, and/or increased channel open probability, while the GluN2D(Ser573Phe), (Ser1271Phe) and (Arg1313Trp) substitutions result in a mild increase of agonist potency, reduced sensitivity to endogenous protons, and decreased channel open probability. The GluN2D(Ser573Phe), (Ala675Thr), and (Ala678Asp) substitutions significantly decrease current amplitude, consistent with reduced surface expression. The GluN2D(Leu670Phe) variant slows current response deactivation time course and increased charge transfer. GluN2D(Ala678Asp) transfection significantly decreased cell viability of rat cultured cortical neurons. In addition, we evaluated a set of FDA-approved NMDAR channel blockers to rescue functional changes of mutant receptors. This work suggests the complexity of the pathological mechanisms of GRIN2D-mediated developmental and epileptic encephalopathy, as well as the potential benefit of precision medicine.


Assuntos
Epilepsia Generalizada/genética , Receptores de N-Metil-D-Aspartato/genética , Adulto , Sequência de Aminoácidos/genética , Animais , Criança , Pré-Escolar , Epilepsia Generalizada/fisiopatologia , Feminino , Regulação da Expressão Gênica/genética , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Masculino , Neurônios/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/genética
8.
Brain Behav Immun ; 82: 279-297, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31505254

RESUMO

BACKGROUND: Although tumor necrosis factor (TNF) inhibitors are used to treat chronic inflammatory diseases, there is little information about how long-term inhibition of TNF affects the homeostatic functions that TNF maintains in the intact CNS. MATERIALS AND METHODS: To assess whether developmental TNF deficiency causes alterations in the naïve CNS, we estimated the number of proliferating cells, microglia, and neurons in the developing neocortex of E13.5, P7 and adult TNF knock out (TNF-/-) mice and wildtype (WT) littermates. We also measured changes in gene and protein expression and monoamine levels in adult WT and TNF-/- mice. To evaluate long-term effects of TNF inhibitors, we treated healthy adult C57BL/6 mice with either saline, the selective soluble TNF inhibitor XPro1595, or the nonselective TNF inhibitor etanercept. We estimated changes in cell number and protein expression after two months of treatment. We assessed the effects of TNF deficiency on cognition by testing adult WT and TNF-/- mice and mice treated with saline, XPro1595, or etanercept with specific behavioral tasks. RESULTS: TNF deficiency decreased the number of proliferating cells and microglia and increased the number of neurons. At the same time, TNF deficiency decreased the expression of WNT signaling-related proteins, specifically Collagen Triple Helix Repeat Containing 1 (CTHRC1) and Frizzled receptor 6 (FZD6). In contrast to XPro1595, long-term inhibition of TNF with etanercept in adult C57BL/6 mice decreased the number of BrdU+ cells in the granule cell layer of the dentate gyrus. Etanercept, but not XPro1595, also impaired spatial learning and memory in the Barnes maze memory test. CONCLUSION: TNF deficiency impacts the organization of neurogenic zones and alters the cell composition in brain. Long-term inhibition of TNF with the nonselective TNF inhibitor etanercept, but not the soluble TNF inhibitor XPro1595, decreases neurogenesis in the adult mouse hippocampus and impairs learning and memory after two months of treatment.


Assuntos
Córtex Cerebral/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Fator de Necrose Tumoral alfa/deficiência , Animais , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Cognição/efeitos dos fármacos , Etanercepte/farmacologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/citologia , Microglia/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Inibidores do Fator de Necrose Tumoral/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Via de Sinalização Wnt
9.
Brain Behav Immun ; 65: 296-311, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28587928

RESUMO

Interleukin-6 (IL-6) is a pleiotropic cytokine with neuroprotective properties. Still, the therapeutic potential of IL-6 after experimental stroke has not yet been investigated in a clinically relevant way. Here, we investigated the therapeutic use of intravenously administered IL-6 and the soluble IL-6 receptor (sIL-6R) alone or in combination, early after permanent middle cerebral artery occlusion (pMCAo) in mice. IL-6 did not affect the infarct volume in C57BL/6 mice, at neither 24 nor 72h after pMCAo but reduced the infarct volume in IL-6 knockout mice at 24h after pMCAo. Assessment of post-stroke behavior showed an improved grip strength after a single IL-6 injection and also improved rotarod endurance after two injections, in C57BL/6 mice at 24h. An improved grip strength and a better preservation of sensory functions was also observed in IL-6 treated IL-6 knockout mice 24h after pMCAo. Co-administration of IL-6 and sIL-6R increased the infarct volume, the number of infiltrating polymorphonuclear leukocytes and impaired the rotarod endurance of C57BL/6 mice 24h after pMCAo. IL-6 administration to naïve C57BL/6 mice lead after 45min to increased plasma-levels of CXCL1 and IL-10, whereas IL-6 administration to C57BL/6 mice lead to a reduction in the ischemia-induced increase in IL-6 and CXCL1 at both mRNA and protein level in brain, and of IL-6 and CXCL1 in serum. We also investigated the expression of IL-6 and IL-6R after pMCAo and found that cortical neurons upregulated IL-6 mRNA and protein, and upregulated IL-6R after pMCAo. In conclusion, the results show a complex but potentially beneficial effect of intravenously administered IL-6 in experimental stroke.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Interleucina-6/farmacologia , Animais , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , RNA Mensageiro , Receptores de Interleucina-6/metabolismo , Receptores de Interleucina-6/fisiologia , Receptores de Interleucina-6/uso terapêutico , Acidente Vascular Cerebral/metabolismo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...